Talent Development offers a wide array of courses. If you would like a course prospectus or more information on any of our courses, please contact us, and we will be happy to forward you additional information. You are also invited to visit our website at www.csos.jhu.edu for complete information on Talent Development programs and curricula.

English Language Arts
- Strategic Reading
- Reading & Writing in Your Career
- College Prep Reading & Writing
- Literacy Lab

Mathematics
- Transition to Advanced Mathematics
- Geometry Foundations
- Algebra II Foundations
- Career Academy Blended Mathematics

Social Studies
- Freshman Seminar

Teaching Students the Universal Language of Mathematics

- Transition to Advanced Mathematics
- Geometry Foundations
- Algebra II Foundations
- Career Academy Blended Mathematics
Talent Development Mathematics Initiative uses research-based practices to foster high mathematical achievement in all students.

The nation’s adolescents are finding that to be prepared for post-secondary experiences, they must have a minimum of three years of high school mathematics. Some educators believe that a continuum of “skills only” and math-facts memorization will successfully prepare them for the highly competitive post-secondary challenges.

However, the NAEP’s 2009 Nation’s Report Card, reported only 34% of America’s 8th-graders performed “at or above” the “proficient” level in mathematics.

Over the last two decades, Talent Development has made positive strides in not only changing the landscape of teaching mathematics but also developing effective strategies and materials to support teachers.

TD’s ongoing research has provided some interesting results — not only have we learned more about how students learn, but also about how teachers teach!

Talent Development Mathematics Initiative uses research-based practices to foster high mathematical achievement in all students.

In the mid 1990s, a team of researchers and practitioners from Johns Hopkins University collaborated with high school teachers and administrators at Patterson High School in Baltimore to develop solutions for helping 9th-grade students succeed in Algebra I. Borne from the initial research was Transition to Advanced Mathematics (TAM), a course strategically designed to prepare students for Algebra I. After its initial implementation at Patterson High School, the course was implemented in other schools in Baltimore and Philadelphia. By early 2000, schools from New York to New Orleans were using Transition to Advanced Mathematics.

While conducting initial research and continuing curriculum development, it became evident that students were benefitting not only from the TAM curriculum but also from the teaching and instructional strategies accompanying it. Increasing numbers of students completing algebra created a need for Talent Development to continue its math sequence. TD Mathematics Initiative developed two new courses — Geometry Foundations and Algebra II Foundations. These “double-dose” courses give students the extra support for success in Algebra I, Geometry, and Algebra II.

Benefits for Students

Students respond...

“I love the Transition to Advanced Mathematics program! Before TAM, I HATED math, but that program helped me understand math a lot better. It got me more involved in doing problems and work better. I loved it!”

“Thanks to TAM, I feel more confident to take on math problems all by myself.”

“I liked actually learning!”

“It gave me a picture in my head about what I learned and how to solve the problem.”

Benefits for Teachers

• Evidence-based, engaging curriculum that is regularly updated based on research, field results, and studies.
• A comprehensive “Teacher’s Kit” containing all the necessary components and resource materials to successfully implement TD curriculum.
• Teacher manuals outline successful teaching strategies, lesson aids, and optional activities to engage students in successful learning.
• Technology integration that fosters understanding of mathematical ideas in representational forms.
• TD coaches and professional development foster curriculum understanding and teacher development.

Making the Grade...

In the late 1990s, Strawberry Mansion High School in Philadelphia was one of the city’s lowest-performing high schools. By 2001, only 2% of its 11th-graders were proficient in mathematics, and its graduation rate was well below 50%. Strawberry Mansion High School and Talent Development High Schools allied to solve this crisis, and today, Strawberry Mansion is the neighborhood high school with the greatest achievement and graduation gains in the school district.

Over the past six years, the percentage of students proficient in mathematics has grown by 51 percentage points and the school’s graduation rate has risen to 74.5 percent.

Teachers respond...

“I like Geometry Foundations because it engages students with hands-on learning experiences, rather than being told formulas or concepts directly. Students are able to discover them for themselves through manipulatives and concept construction.

Teachers comments on TD Mathematics Initiative components:

• The hands-on activities are very good.
• I like all the resource materials that accompany the course.
• The CABM lesson on building roofs really drives home the idea of steepness.

“Kids appear to be more willing and enthusiastic to “explain and justify” their answers.”

“Curriculum has helped kids feel more comfortable with each other.”

Responding to Schools in Crisis

In the mid 1990s, a team of researchers and practitioners from Johns Hopkins University collaborated with high school teachers and administrators at Patterson High School in Baltimore to develop solutions for helping 9th-grade students succeed in Algebra I. Borne from the initial research was Transition to Advanced Mathematics (TAM), a course strategically designed to prepare students for Algebra I. After its initial implementation at Patterson High School, the course was implemented in other schools in Baltimore and Philadelphia. By early 2000, schools from New York to New Orleans were using Transition to Advanced Mathematics.

While conducting initial research and continuing curriculum development, it became evident that students were benefitting not only from the TAM curriculum but also from the teaching and instructional strategies accompanying it. Increasing numbers of students completing algebra created a need for Talent Development to continue its math sequence. TD Mathematics Initiative developed two new courses — Geometry Foundations and Algebra II Foundations. These “double-dose” courses give students the extra support for success in Algebra I, Geometry, and Algebra II.

Research shows that the TD classroom model, combined with our research-driven curriculum, helps teachers teach students mathematics, and engages students to want to learn mathematics.
TD Mathematics Initiative relies on field data collected each school year to ensure our curriculum is not only up to the highest standards but also able to integrate new teaching and learning strategies with proven results.

Research conducted by Johns Hopkins University and Talent Development High Schools shows that students achieve when they attend schools where teachers and curriculum are responsive to their educational and societal needs. Independent evaluation finds that students attending Talent Development High Schools are more likely to succeed academically than students in comparison high schools.

Closing the Gap

Research conducted by Johns Hopkins University and Talent Development High Schools shows that students achieve when they attend schools where teachers and curriculum are responsive to their educational and societal needs. Independent evaluation finds that students attending Talent Development High Schools are more likely to succeed academically than students in comparison high schools.

Students showed dramatic gains in algebra credits:
Talent Development schools nearly doubled the percentage of students earning credits in Algebra I, a primary gatekeeper course for grade promotion and graduation.

(Source: 2005 MDRC report)

In 2007, the U.S. Department of Education awarded Johns Hopkins University a major research grant to conduct a rigorous study of the impact of Transition to Advanced Mathematics/Algebra I on student learning. To obtain the grant, TD had to demonstrate initial evidence of TAM’s effectiveness. During the 2008-2009 and 2009-2010 school years, 13 districts and 46 schools participated in the study. High schools in each district were randomly assigned to either implement TAM (first semester) and Algebra 1 (second semester) or a “Stretch Algebra” (Algebra 1A/1B throughout the school year) curriculum of their choosing. The study examines student growth in intermediate mathematics, Algebra 1 proficiency, Algebra grades, and credit accumulation in algebra. Results are expected in 2011.

Research, Results, and Achievements

Closing the Gap

Research conducted by Johns Hopkins University and Talent Development High Schools shows that students achieve when they attend schools where teachers and curriculum are responsive to their educational and societal needs. Independent evaluation finds that students attending Talent Development High Schools are more likely to succeed academically than students in comparison high schools.

Students showed dramatic gains in algebra credits:
Talent Development schools nearly doubled the percentage of students earning credits in Algebra I, a primary gatekeeper course for grade promotion and graduation.

(Source: 2005 MDRC report)

In 2007, the U.S. Department of Education awarded Johns Hopkins University a major research grant to conduct a rigorous study of the impact of Transition to Advanced Mathematics/Algebra I on student learning. To obtain the grant, TD had to demonstrate initial evidence of TAM’s effectiveness. During the 2008-2009 and 2009-2010 school years, 13 districts and 46 schools participated in the study. High schools in each district were randomly assigned to either implement TAM (first semester) and Algebra 1 (second semester) or a “Stretch Algebra” (Algebra 1A/1B throughout the school year) curriculum of their choosing. The study examines student growth in intermediate mathematics, Algebra 1 proficiency, Algebra grades, and credit accumulation in algebra. Results are expected in 2011.

Research, Results, and Achievements

Giving Teachers & Students the Proper Tools

TD Mathematics Initiative curricula incorporate research findings, field results, and the best information available regarding how students learn mathematics.

TD Mathematics Initiative courses use a multi-tiered approach, including:
- Strategic use of schedules and time
- Reflective practices for teachers
- Evidence-based teaching practices

TD Mathematics Initiative courses are designed to:
- Spark students’ problem-solving abilities
- Develop students’ number sense
- Increase students’ mathematical and verbal communication skills
- Increase students’ desire and belief in their mathematical abilities

Students work in groups, with partners, and individually to solve problems, share solutions, and construct understanding.

Transition to Advanced Mathematics, Geometry Foundations, and Algebra II Foundations all engage students with activities that link mathematical skills or abstract mathematics to something concrete. These activities allow students to make connections to prior knowledge and think about their own mathematical thinking. Various teaching and learning strategies give students multiple entry points into each lesson’s mathematical topic and address the variety of learning styles within the classroom.

When taught as designed, TD Mathematics Initiative courses offer students and teachers classroom experiences that allow them to build a solid foundation of mathematical understanding.

TD Mathematics Initiative Core Beliefs

- Students benefit from conceptual and procedural activities linked to mathematical concepts.
- Students bring a variety of experiences to the mathematics classroom — it is important to uncover students’ prior understanding, preconceptions, and misconceptions when representing mathematical ideas.
- Manipulatives and concrete models are beneficial when used appropriately.
- Students need opportunities for success.
- Justifying responses and providing evidence to support conclusions are important components of learning.
- Metacognition is needed to secure understanding.
- Teachers are best served as facilitators of student learning.
- One cannot truly learn mathematics without talking about the mathematics.
- Differentiation can occur in the direct part of the lesson through addressing a variety of learning and thinking strategies.
- Pedagogical content knowledge means not just knowing a variety of instructional strategies but also which strategy best supports the concept, learner, and situation.
- All students have something to contribute when activities allow for multiple entry points and approaches.
- Extended class time allows students to access higher mathematics.
- Students need opportunities to work with multiple representations of key mathematical ideas.
- Success in mathematics requires students to persist and try a variety of mathematical approaches.

In 2007, the U.S. Department of Education awarded Johns Hopkins University a major research grant to conduct a rigorous study of the impact of Transition to Advanced Mathematics/Algebra I on student learning. To obtain the grant, TD had to demonstrate initial evidence of TAM’s effectiveness. During the 2008-2009 and 2009-2010 school years, 13 districts and 46 schools participated in the study. High schools in each district were randomly assigned to either implement TAM (first semester) and Algebra 1 (second semester) or a “Stretch Algebra” (Algebra 1A/1B throughout the school year) curriculum of their choosing. The study examines student growth in intermediate mathematics, Algebra 1 proficiency, Algebra grades, and credit accumulation in algebra. Results are expected in 2011.
Transition to Advanced Mathematics (TAM) was the first course designed by the TD Mathematics Initiative team. In conjunction with Algebra I, TAM offers students a year-long “double-dose” of mathematics instruction. It is an 80- to 90-minute course offered daily during the first semester. Research has shown that TAM prepares students for the rigorous sequence of standards-based high school mathematics courses. TAM encourages students’ conceptual understanding of key ideas that underlie all high school mathematics and sharpens their overall basic mathematical skills. TAM challenges students to think through and understand what they are doing, learn from one another, communicate and respect ideas, and make connections between mathematics and the world.

Students learn how to collect and analyze real world data, use statistical tools and approaches to make data-based decisions and interpretations, and learn how collecting and presenting data can influence interpretation.

Lesson 1: Topics in Number Theory
Lesson 2: Number Patterns
Lesson 3: Inductive Reasoning
Lesson 4: Data Analysis
Lesson 5: Descriptive Statistics
Lesson 6: Probability

Students develop understanding and the need for the different number sets with a focus on the four main operations on a set of integers.

Lesson 1: Natural Numbers to Integers
Lesson 2: Adding Integers
Lesson 3: Subtracting Integers
Lesson 4: Multiplying Integers
Lesson 5: Dividing Integers
Lesson 6: Natural Numbers to Rational Numbers

Students explore rational numbers from both an additive (absolute) and multiplicative (relative) approach.

Lesson 1: Relative and Absolute Reasoning
Lesson 2: Percents
Lesson 3: Finding Percents
Lesson 4: The Multiple Personalities of Rational Numbers and Unitizing Revisited
Lesson 5: Common Denominators and Adding/Subtracting Fractions
Lesson 6: Multiplying Rational Numbers
Lesson 7: Reciprocals and Dividing Fractions
Lesson 8: Investigating the Mysteries of Decimals
Lesson 9: Ratios and Rates

Career Academy Blended Mathematics
A new series of supplementary lessons that will enhance all students’ mathematical learning experiences.

Career Academy Blended Mathematics (CABM) is a series of exciting projects that include advanced material and supplement existing Talent Development and general curricula. CABM presents mathematics in an engaging manner while corresponding with state and district mathematics standards. These projects provide extensive real-world applications embedded with career themes to equip students with the critical thinking abilities to prosper beyond high school. CABM’s in-depth, multi-day projects align with geometric, algebraic, and trigonometric topics found in every high school mathematics class.

Unit 1: Mathematical Reasoning, Data Analysis, and Probability

Students learn how to collect and analyze real world data, use statistical tools and approaches to make data-based decisions and interpretations, and learn how collecting and presenting data can influence interpretation.

Lesson 1: Topics in Number Theory
Lesson 2: Number Patterns
Lesson 3: Inductive Reasoning
Lesson 4: Data Analysis
Lesson 5: Descriptive Statistics
Lesson 6: Probability

Each CABM Project Contains...

- Collaborative Student Research Teams
 - Builds mathematical/scientific communication between peers
 - Promotes teamwork

- Background Information Reading
 - Provides relevance
 - Promotes career knowledge
 - Presents global picture of topic
 - Provides context for mathematical derivations

- Experiment/Construction Activity
 - Builds links between tactile objects and high level mathematics

- Mathematics Investigation/Data Analysis
 - Links representations and translations between representations

- Class Presentations
 - Promote mathematical and scientific communication
 - Show multiple aspects of overall problem

Current CABM Lessons
- Auto Racing (Geometry & Trigonometry)
- Cocoa Production (Data Analysis & Representation)
- Difference Boxes (Mathematical Analysis)
- Square Law (Proportions & Quadratic Equations)
- Puff Pastry Layers (Exponential Functions)
- Census Estimation (Data Analysis & Representation)
- Staircase Design (Slope & Trigonometry)
- Tree Height (Linear Equations)
- West Nile Virus (Data Analysis & Representation)
- Sports Jump! (Health & Fitness/Sports)

Career Academy Blended Mathematics (CABM) is a series of exciting projects that include advanced material and supplement existing Talent Development and general curricula. CABM presents mathematics in an engaging manner while corresponding with state and district mathematics standards. These projects provide extensive real-world applications embedded with career themes to equip students with the critical thinking abilities to prosper beyond high school. CABM’s in-depth, multi-day projects align with geometric, algebraic, and trigonometric topics found in every high school mathematics class.

Current CABM Lessons
- Auto Racing (Geometry & Trigonometry)
- Cocoa Production (Data Analysis & Representation)
- Difference Boxes (Mathematical Analysis)
- Square Law (Proportions & Quadratic Equations)
- Puff Pastry Layers (Exponential Functions)
- Census Estimation (Data Analysis & Representation)
- Staircase Design (Slope & Trigonometry)
- Tree Height (Linear Equations)
- West Nile Virus (Data Analysis & Representation)
- Sports Jump! (Health & Fitness/Sports)
Unit 4: Measurement

Students learn how to accurately measure by selecting and using appropriate techniques, units, and tools. Students use geometric measures of length, area, volume, and angles.

- Lesson 1: Measuring Concepts and Skills
- Lesson 2: Areas and Perimeters
- Lesson 3: Rectangles and Parallelograms
- Lesson 4: Angles and Angle Measures
- Lesson 5: Getting Ready for Pythagoras
- Lesson 6: Locations for Real Numbers
- Lesson 7: Slope
- Lesson 8: Slopes for Special Lines

Unit 5: Patterns and Functions

Introduction to Algebra

Students learn how to look for, generalize, and use patterns; understand the meaning and nature of variables; represent algebraic problems verbally, visually, concretely, and symbolically; and begin to appreciate algebraic language and the power of symbolism.

- Lesson 1: Order of Operations
- Lesson 2: Equivalence
- Lesson 3: Opposite Operations
- Lesson 4: Solving One-Step Equations
- Lesson 5: Solving Two-Step Equations
- Lesson 6: Tables and Graphs
- Lesson 7: Patterns
- Lesson 8: Introduction to Functions
- Lesson 9: Exploring and Analyzing Graphs

Key Components & Advantages

Peer-Assisted Starter Activities

Each lesson begins with a “Problem of the Day.” This activity supports students’ development of number sense and mathematical reasoning. Students are challenged to determine if given situations “make sense” in different mathematical contexts. Ranging from the number of “kangaroo leaps” in a football field to a reasonable guess of the number of hours the average person watches TV, these problems use an open-ended format that promotes developing a community mathematical learners and refining inter-personal and mathematical communications.

Whole-Class Discovery

TAM lessons provide a wide variety of opportunities for students to re-explore concepts they were taught in middle school and “make sense” in different mathematical contexts. Ranging from the number of “kangaroo leaps” in a football field to a reasonable guess of the number of hours the average person watches TV, these problems use an open-ended format that promotes developing a community mathematical learners and refining inter-personal and mathematical communications.

Differentiated Individual & Small Group Instruction

Supplemental materials provide additional reinforcement of the lessons’ objectives and other fundamental mathematical concepts.
Geometry Foundations (GF) offers the same beneficial “double-dose” strategy to geometry students as TAM. GF reviews basic algebraic skills and fosters students’ conceptual understanding of key ideas in high school geometry.

GF helps students:
- Learn missing mathematical components.
- Develop new concepts.
- Broaden depth of understanding.
- Strengthen skills and mathematical reasoning.

Geometry Foundations uses TD Mathematics Initiative’s strategies of working in partnerships, challenging students to think through and make sense of what they are doing, learn from one another, share and respect ideas, and make connections between geometry and the world.

Unit 1: Introduction to Geometry

A variety of topics allows students to begin the year successfully, review basic fundamentals, develop cooperative learning strategies, increase skills with manipulative and geometric tools, and discover new concepts.

Lesson 1: Chromatic Numbers
Lesson 2: Lines of Symmetry
Lesson 3: Rotational Symmetry
Lesson 4: Cutting the Pattern
Lesson 5: Similarity
Lesson 6: The Nth Term

Unit 2: Measurement

Students will engage in an array of measurement activities that help them conceptually understand length, area, and volume.

Lesson 1: Metric Identification Card
Lesson 2: Counting Squares
Lesson 3: Walking the Distance
Lesson 4: Distance Proportions
Lesson 5: Area and Perimeter
Lesson 6: Cube Nets
Lesson 7: Surface Area and Volume
Lesson 8: Big Base

Unit 3: Properties of Objects

Students investigate the common properties of basic geometric shapes by physically interacting with cutouts and drawings.

Lesson 1: Circles
Lesson 2: Basic Triangles
Lesson 3: Special Triangles
Lesson 4: Quadrilaterals
Lesson 5: Parallelograms
Lesson 6: Special Quadrilaterals
Lesson 7: Pythagorean Theorem
Lesson 8: Center of Mass
Lesson 9: Circumscribed Circles
Lesson 10: Inscribed Circles

Unit 4: Coordinate Geometry

Students review the fundamental skills and concepts to work effectively with the coordinate plane hands-on activities.

Lesson 1: Plotting Points
Lesson 2: Calculator Plotting
Lesson 3: Rise and Run
Lesson 4: Slope
Lesson 5: Parallel
Lesson 6: Perpendicular
Lesson 7: Distance Formula
Lesson 8: Midpoint
Lesson 9: Coordinate Proof

Unit 5: Language of Geometry

Students learn the formal terms and objects common to geometry. They also construct meaningful understanding of geometric terms and objects.

Lesson 1: Get the Point!
Lesson 2: Line it Up?
Lesson 3: The Plane Truth
Lesson 4: Space
Lesson 5: Segments and Rays
Lesson 6: Angles
Lesson 7: Congruence
Lesson 8: Similar
Lesson 9: 3-D Objects

Key Components & Advantages

Peer-Assisted Starter Activities
A “Problem of the Day” begins each Geometry Foundations lesson. These activities provide multiple entry points to non-routine problems with many exploring spatial relationships. Pairs, or small groups, of students begin work immediately upon entering the classroom.

Algebra Connections
Many students need support with algebra. Geometry Foundations includes activities and exercises at the end of each lesson to help students review and connect important algebra and geometry concepts. Each Algebra Connection exercise is linked to the geometry concepts covered in the lesson.

The TD Mathematics Initiative Classroom
- Consumable student materials that engage students in transitional activities to build strong foundations.
- Materials that encourage procedural and conceptual understanding of “big ideas.”
- Opportunities for peer-assisted learning.
- Exercises and activities designed to reveal students’ pre-conceptions and misconceptions.
- Proven strategies that promote student metacognitive and self-directed thinking and learning.
- Encouraging classrooms where students learn from one another, share ideas, and respect others’ ideas.
- Lessons designed to connect mathematics to the real world.
- Students develop abilities to transition from concrete mathematics thinking to abstract thinking.
Geometry Foundations (GF) offers the same beneficial “double-dose” strategy to geometry students as TAM. GF reviews basic algebraic skills and fosters students’ conceptual understanding of key ideas in high school geometry.

GF helps students:
- Learn missing mathematical components.
- Develop new concepts.
- Broaden depth of understanding.
- Strengthen skills and mathematical reasoning.

Geometry Foundations uses TD Mathematics Initiative’s strategies of working in partnerships, challenging students to think through and make sense of what they are doing, learn from one another, share and respect ideas, and make connections between geometry and the world.

Unit 1: Introduction to Geometry

A variety of topics allows students to begin the year successfully, review basic fundamentals, develop cooperative learning strategies, increase skills with manipulative and geometric tools, and discover new concepts.

Lesson 1: Chromatic Numbers
Lesson 2: Lines of Symmetry
Lesson 3: Rotational Symmetry
Lesson 4: Cutting the Pattern
Lesson 5: Similarity
Lesson 6: The Nth Term

Unit 2: Measurement

Students will engage in an array of measurement activities that help them conceptually understand length, area, and volume.

Lesson 1: Metric Identification Card
Lesson 2: Counting Squares
Lesson 3: Walking the Distance
Lesson 4: Distance Proportions
Lesson 5: Area and Perimeter
Lesson 6: Cube Nets
Lesson 7: Surface Area and Volume
Lesson 8: Big Base

Unit 3: Properties of Objects

Students investigate the common properties of basic geometric shapes by physically interacting with cutouts and drawings.

Lesson 1: Circles
Lesson 2: Basic Triangles
Lesson 3: Special Triangles
Lesson 4: Quadrilaterals
Lesson 5: Parallelograms
Lesson 6: Special Quadrilaterals
Lesson 7: Pythagorean Theorem
Lesson 8: Center of Mass
Lesson 9: Circumscribed Circles
Lesson 10: Inscribed Circles

Unit 4: Coordinate Geometry

Students review the fundamental skills and concepts to work effectively with the coordinate plane hands-on activities.

Lesson 1: Plotting Points
Lesson 2: Calculator Plotting
Lesson 3: Rise and Run
Lesson 4: Slope
Lesson 5: Parallel
Lesson 6: Perpendicular
Lesson 7: Distance Formula
Lesson 8: Midpoint
Lesson 9: Coordinate Proof

Unit 5: Language of Geometry

Students learn the formal terms and objects common to geometry. They also construct meaningful understanding of geometric terms and objects.

Lesson 1: Get the Point!
Lesson 2: Line it Up?
Lesson 3: The Plane Truth
Lesson 4: Space
Lesson 5: Segments and Rays
Lesson 6: Angles
Lesson 7: Congruence
Lesson 8: Similar
Lesson 9: 3-D Objects

Key Components & Advantages

Peer-Assisted Starter Activities
A “Problem of the Day” begins each Geometry Foundations lesson. These activities provide multiple entry points to non-routine problems with many exploring spatial relationships. Pairs, or small groups, of students begin work immediately upon entering the classroom.

Algebra Connections
Many students need support with algebra. Geometry Foundations includes activities and exercises at the end of each lesson to help students review and connect important algebra and geometry concepts. Each Algebra Connection exercise is linked to the geometry concepts covered in the lesson.

Whole-Class Discovery
Geometry Foundations lessons give students the opportunity to use tools and sometimes construct objects that help them conceptually understand basic geometric topics: measurement, property of objects, and coordinate geometry. Some components feature groups that work together and give class presentations to explain the approach they used to solve an exercise.

GF engages students first semester and gives them a concrete understanding of geometry, allowing them to be more successful when they move into the second-semester geometry course that is more theorem-based.

Student Journals Available in Spanish Translations

The TD Mathematics Initiative Classroom
- Consumable student materials that engage students in transitional activities to build strong foundations.
- Materials that encourage procedural and conceptual understanding of “big ideas.”
- Opportunities for peer-assisted learning.
- Exercises and activities designed to reveal students’ pre-conceptions and misconceptions.
- Proven strategies that promote student metacognitive and self-directed thinking and learning.
- Encouraging classrooms where students learn from one another, share ideas, and respect others’ ideas.
- Lessons designed to connect mathematics to the real world.
- Students develop abilities to transition from concrete mathematics thinking to abstract thinking.
Unit 4: Measurement

Students learn how to accurately measure by selecting and using appropriate techniques, units, and tools. Students use geometric measures of length, area, volume, and angles.

Lesson 1: Measuring Concepts and Skills
Lesson 2: Areas and Perimeters
Lesson 3: Rectangles and Parallelograms
Lesson 4: Angles and Angle Measures
Lesson 5: Getting Ready for Pythagoras
Lesson 6: Locations for Real Numbers
Lesson 7: Slope
Lesson 8: Slopes for Special Lines

Unit 5: Patterns and Functions Introduction to Algebra

Students learn how to look for, generalize, and use patterns; understand the meaning and nature of variables; represent algebraic problems verbally, visually, concretely, and symbolically; and begin to appreciate algebraic language and the power of symbolism.

Lesson 1: Order of Operations
Lesson 2: Equivalence
Lesson 3: Opposite Operations
Lesson 4: Solving One-Step Equations
Lesson 5: Solving Two-Step Equations
Lesson 6: Tables and Graphs
Lesson 7: Patterns
Lesson 8: Introduction to Functions
Lesson 9: Exploring and Analyzing Graphs

Key Components & Advantages

Peer-Assisted Starter Activities
Each lesson begins with a “Problem of the Day.” This activity supports students’ development of number sense and mathematical reasoning. Students are challenged to determine if given situations “make sense” in different mathematical contexts. Ranging from the number of “kangaroo leaps” in a football field to a reasonable guess of the number of hours the average person watches TV, these problems use an open-ended format that promotes developing a community mathematical learners and refining inter-personal and mathematical communications.

Whole-Class Discovery
TAM lessons provide a wide variety of opportunities for students to re-explore concepts they were taught in middle school in a novel context. This provides teachers with an excellent opportunity to facilitate classroom dialogues about new topics, such as “Goldbach’s Conjecture,” “abundant,” “deficient,” and “perfect” numbers. Students learn new ways to conceptually represent such topics as prime and composite numbers. Topics and contexts were selected specifically to pique student interest and develop confidence in their ability to think mathematically. They also address the prerequisite areas needed for success in second-semester Algebra I.

Assorted activities built into each lesson engage students in discussions of how and why basic mathematics works in everyday life.
Transition to Advanced Mathematics (TAM) was the first course designed by the TD Mathematics Initiative team. In conjunction with Algebra I, TAM offers students a year-long “double-dose” of mathematics instruction. It is an 80- to 90-minute course offered daily during the first semester. Research has shown that TAM prepares students for the rigorous sequence of standards-based high school mathematics courses.

TAM encourages students' conceptual understanding of key ideas that underlie all high school mathematics and sharpens their overall basic mathematical skills. TAM challenges students to think through and understand what they are doing, learn from one another, communicate and respect ideas, and make connections between mathematics and the world.

Students learn how to collect and analyze real world data, use statistical tools and approaches to make data-based decisions and interpretations, and learn how collecting and presenting data can influence interpretation.

Lesson 1: Topics in Number Theory
Lesson 2: Number Patterns
Lesson 3: Inductive Reasoning
Lesson 4: Data Analysis
Lesson 5: Descriptive Statistics
Lesson 6: Probability

Students develop understanding and the need for the different number sets with a focus on the four main operations on a set of integers.

Lesson 1: Natural Numbers to Integers
Lesson 2: Adding Integers
Lesson 3: Subtracting Integers
Lesson 4: Multiplying Integers
Lesson 5: Dividing Integers
Lesson 6: Natural Numbers to Rational Numbers

Students explore rational numbers from both an additive (absolute) and multiplicative (relative) approach.

Lesson 1: Relative and Absolute Reasoning
Lesson 2: Percents
Lesson 3: Finding Percents
Lesson 4: The Multiple Personalities of Rational Numbers and Unitizing Revisited
Lesson 5: Common Denominators and Adding/Subtracting Fractions
Lesson 6: Multiplying Rational Numbers
Lesson 7: Reciprocals and Dividing Fractions
Lesson 8: Investigating the Mysteries of Decimals
Lesson 9: Ratios and Rates

Unit 2: Numbers and Integers

Unit 3: Rational Numbers

Career Academy Blended Mathematics

A new series of supplementary lessons that will enhance all students’ mathematical learning experiences.

Career Academy Blended Mathematics (CABM) is a series of exciting projects that include advanced material and supplement existing Talent Development and general curricula. CABM presents mathematics in an engaging manner while corresponding with state and district mathematics standards. These projects provide extensive real–world applications embedded with career themes to equip students with the critical thinking abilities to prosper beyond high school. CABM’s in–depth, multi–day projects align with geometric, algebraic, and trigonometric topics found in every high school mathematics class.

Construction complete!
The student team proudly displays the completed staircase.

Current CABM Lessons
• Auto Racing (Geometry & Trigonometry)
• Cocoa Production (Data Analysis & Representation)
• Difference Boxes (Mathematical Analysis)
• Square Law (Proportions & Quadratic Equations)
• Puff Pastry Layers (Exponential Functions)
• Census Estimation (Data Analysis & Representation)
• Staircase Design (Slope & Trigonometry)
• Tree Height (Linear Equations)
• West Nile Virus (Data Analysis & Representation)
• Sports Jump! (Health & Fitness/Sports)

Each CABM Project Contains . . .

Collaborative Student Research Teams
• Builds mathematical/scientific communication between peers
• Promotes teamwork

Background Information Reading
• Provides relevance
• Promotes career knowledge
• Presents global picture of topic
• Provides context for mathematical derivations

Experiment/Construction Activity
• Builds links between tactile objects and high level mathematics

Mathematics Investigation/Data Analysis
• Links representations and translations between representations

Students will:
• Collect data, tabulate, graph, calculate, determine mathematical functions from graphs and data, make predictions

Class Presentations
• Promote mathematical and scientific communication
• Show multiple aspects of overall problem
TD Mathematics Initiative Core Beliefs

- Students benefit from conceptual and procedural activities linked to mathematical concepts.
- Students bring a variety of experiences to the mathematics classroom — it is important to uncover students’ prior understanding, preconceptions, and misconceptions when representing mathematical ideas.
- Manipulatives and concrete models are beneficial when used appropriately.
- Students need opportunities for success.
- Justifying responses and providing evidence to support conclusions are important components of learning.
- Metacognition is needed to secure understanding.
- Teachers are best served as facilitators of student learning.
- One cannot truly learn mathematics without talking about the mathematics.
- Differentiation can occur in the direct part of the lesson through addressing a variety of learning and thinking strategies.
- Pedagogical content knowledge means not just knowing a variety of instructional strategies but also which strategy best supports the concept, learner, and situation.
- All students have something to contribute when activities allow for multiple entry points and approaches.
- Extended class time allows students to access higher mathematics.
- Students need opportunities to work with multiple representations of key mathematical ideas.
- Success in mathematics requires students to persist and try a variety of mathematical approaches.

Closing the Gap

Research conducted by Johns Hopkins University and Talent Development High Schools shows that students achieve when they attend schools where teachers and curriculum are responsive to their educational and societal needs. Independent evaluation finds that students attending Talent Development High Schools are more likely to succeed academically than students in comparison high schools.

Students showed dramatic gains in algebra credits: Talent Development schools nearly doubled the percentage of students earning credits in Algebra I, a primary gatekeeper course for grade promotion and graduation. (Source: 2005 MDRC report)

Giving Teachers & Students the Proper Tools

TD Mathematics Initiative curricula incorporate research findings, field results, and the best information available regarding how students learn mathematics.

TD Mathematics Initiative courses use a multi-tiered approach, including:

- Strategic use of schedules and time
- Reflective practices for teachers
- Evidence-based teaching practices

TD Mathematics Initiative courses are designed to:

- Spark students’ problem-solving abilities
- Develop students’ number sense
- Increase students’ mathematical and verbal communication skills
- Increase students’ desire and belief in their mathematical abilities

Students work in groups, with partners, and individually to solve problems, share solutions, and construct understanding.

Transition to Advanced Mathematics, Geometry Foundations, and Algebra II Foundations all engage students with activities that link mathematical skills or abstract mathematics to something concrete. These activities allow students to make connections to prior knowledge and think about their own mathematical thinking. Various teaching and learning strategies give students multiple entry points into each lesson’s mathematical topic and address the variety of learning styles within the classroom.

When taught as designed, TD Mathematics Initiative courses offer students and teachers classroom experiences that allow them to build a solid foundation of mathematical understanding.

Research, Results, and Achievements

In 2007, the U.S. Department of Education awarded Johns Hopkins University a major research grant to conduct a rigorous study of the impact of *Transition to Advanced Mathematics/Algebra I* on student learning. To obtain the grant, TD had to demonstrate initial evidence of TAM’s effectiveness. During the 2008-2009 and 2009-2010 school years, 13 districts and 46 schools participated in the study. High schools in each district were randomly assigned to either implement TAM (first semester) and Algebra 1 (second semester) or a “Stretch Algebra” (Algebra 1A/1B throughout the school year) curriculum of their choosing. The study examines student growth in intermediate mathematics, Algebra 1 proficiency, algebra grades, and credit accumulation in algebra. Results are expected in 2011.

Impacts on and Baseline Averages for Key Outcomes for First-Time Ninth-Grade Students

<table>
<thead>
<tr>
<th>Percentage-point change from baseline average</th>
<th>Talent Development Schools</th>
<th>Non-Talent Development Schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance rate</td>
<td>-0.45</td>
<td>1.15</td>
</tr>
<tr>
<td>Basic academic curriculum completed</td>
<td>+3.7</td>
<td>+11.1</td>
</tr>
<tr>
<td>Algebra credit earned</td>
<td>+24.5***</td>
<td>-2.9</td>
</tr>
<tr>
<td>Promoted to the 10th grade</td>
<td>+5.5</td>
<td>+6.5</td>
</tr>
<tr>
<td>Promoted to the 11th grade</td>
<td>+0.3</td>
<td>+0.45</td>
</tr>
</tbody>
</table>

Baseline averages for Talent Development school (%):

- Attendance rate: 72.8
- Basic academic curriculum completed: 43.5
- Algebra credit earned: 33.1
- Promoted to the 10th grade: 59.0
- Promoted to the 11th grade: 47.2
The nation’s adolescents are finding that to be prepared for post-secondary experiences, they must have a minimum of three years of high school mathematics. Some educators believe that a continuum of “skills only” and math-facts memorization will successfully prepare them for the highly competitive post-secondary challenges.

However, the NAEP’s 2009 Nation’s Report Card, reported only 34% of America’s 8th-graders performed “at or above” the “proficient” level in mathematics.

Over the last two decades, Talent Development has made positive strides in not only changing the landscape of teaching mathematics but also developing effective strategies and materials to support teachers.

TD’s ongoing research has provided some interesting results — not only have we learned more about how students learn, but also about how teachers teach!

Talent Development Mathematics Initiative uses research-based practices to foster high mathematical achievement in all students.

In the mid 1990s, a team of researchers and practitioners from Johns Hopkins University collaborated with high school teachers and administrators at Patterson High School in Baltimore to develop solutions for helping 9th-grade students succeed in Algebra I. Borne from the initial research was Transition to Advanced Mathematics (TAM), a course strategically designed to prepare students for Algebra I. After its initial implementation at Patterson High School, the course was implemented in other schools in Baltimore and Philadelphia. By early 2000, schools from New York to New Orleans were using Transition to Advanced Mathematics.

While conducting initial research and continuing curriculum development, it became evident that students were benefiting not only from the TAM curriculum but also from the teaching and instructional strategies accompanying it. Increasing numbers of students completing algebra created a need for Talent Development to continue its math sequence. TD Mathematics Initiative developed two new courses — Geometry Foundations and Algebra II Foundations. These “double-dose” courses give students the extra support for success in Algebra I, Geometry, and Algebra II. Research shows that the TD classroom model, combined with our research-driven curriculum, helps teachers teach students mathematics, and engages students to want to learn mathematics.

TD Mathematics Initiative Sequence for Transition Courses

<table>
<thead>
<tr>
<th>1st Semester</th>
<th>2nd Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition to Advanced Mathematics</td>
<td>Algebra I</td>
</tr>
<tr>
<td>Geometry Foundations</td>
<td>Geometry</td>
</tr>
<tr>
<td>Algebra II Foundations</td>
<td>Algebra II</td>
</tr>
</tbody>
</table>

Students across the country are responding to TD Mathematics Initiative!

“I love the Transition to Advanced Mathematics program! Before TAM, I HATED math, but that program helped me understand math a lot better. It got me more involved in doing problems and work better. I loved it!”

“Thanks to TAM, I feel more confident to take on math problems all by myself.”

“I liked actually learning!”

“It gave me a picture in my head about what I learned and how to solve the problem.”

While conducting initial research and continuing curriculum development, it became evident that students were benefiting not only from the TAM curriculum but also from the teaching and instructional strategies accompanying it. Increasing numbers of students completing algebra created a need for Talent Development to continue its math sequence. TD Mathematics Initiative developed two new courses — Geometry Foundations and Algebra II Foundations. These “double-dose” courses give students the extra support for success in Algebra I, Geometry, and Algebra II. Research shows that the TD classroom model, combined with our research-driven curriculum, helps teachers teach students mathematics, and engages students to want to learn mathematics.

Benefits for Teachers

• Evidence-based, engaging curriculum that is regularly updated based on research, field results, and studies.
• A comprehensive “Teacher’s Kit” containing all the necessary components and resource materials to successfully implement TD curriculum.
• Teacher manuals outline successful teaching strategies, lesson aids, and optional activities to engage students in successful learning.
• Technology integration that fosters understanding of mathematical ideas in representational forms.
• TD coaches and professional development foster curriculum understanding and teacher development.

In the mid 1990s, a team of researchers and practitioners from Johns Hopkins University collaborated with high school teachers and administrators at Patterson High School in Baltimore to develop solutions for helping 9th-grade students succeed in Algebra I. Borne from the initial research was Transition to Advanced Mathematics (TAM), a course strategically designed to prepare students for Algebra I. After its initial implementation at Patterson High School, the course was implemented in other schools in Baltimore and Philadelphia. By early 2000, schools from New York to New Orleans were using Transition to Advanced Mathematics.

Transition to Advanced Mathematics is designed to help students develop the critical thinking skills necessary for success in advanced mathematics. The course is structured to provide a solid foundation in algebraic concepts and problem-solving strategies. Students are encouraged to think critically and apply their knowledge to real-world situations. Transition to Advanced Mathematics includes a variety of instructional methods, such as group work, hands-on activities, and technology integration.

Benefits for Students

Students across the country are responding to TD Mathematics Initiative!

“I love the Transition to Advanced Mathematics program! Before TAM, I HATED math, but that program helped me understand math a lot better. It got me more involved in doing problems and work better. I loved it!”

“Thanks to TAM, I feel more confident to take on math problems all by myself.”

“I liked actually learning!”

“It gave me a picture in my head about what I learned and how to solve the problem.”

In the mid 1990s, a team of researchers and practitioners from Johns Hopkins University collaborated with high school teachers and administrators at Patterson High School in Baltimore to develop solutions for helping 9th-grade students succeed in Algebra I. Borne from the initial research was Transition to Advanced Mathematics (TAM), a course strategically designed to prepare students for Algebra I. After its initial implementation at Patterson High School, the course was implemented in other schools in Baltimore and Philadelphia. By early 2000, schools from New York to New Orleans were using Transition to Advanced Mathematics.

Making the Grade...In the late 1990s, Strawberry Mansion High School in Philadelphia was one of the city’s lowest-performing high schools. By 2001, only 2% of its 11th-graders were proficient in mathematics, and its graduation rate was well below 50%. Strawberry Mansion High School and Talent Development High Schools allied to solve this crisis, and today, Strawberry Mansion is the neighborhood high school with the greatest achievement and graduation gains in the school district.

Over the past six years, the percentage of students proficient in mathematics has grown by 51 percentage points and the school’s graduation rate his risen to 74.5 percent.

Benefits for Students

Students across the country are responding to TD Mathematics Initiative!

“I love the Transition to Advanced Mathematics program! Before TAM, I HATED math, but that program helped me understand math a lot better. It got me more involved in doing problems and work better. I loved it!”

“Thanks to TAM, I feel more confident to take on math problems all by myself.”

“I liked actually learning!”

“It gave me a picture in my head about what I learned and how to solve the problem.”

In the mid 1990s, a team of researchers and practitioners from Johns Hopkins University collaborated with high school teachers and administrators at Patterson High School in Baltimore to develop solutions for helping 9th-grade students succeed in Algebra I. Borne from the initial research was Transition to Advanced Mathematics (TAM), a course strategically designed to prepare students for Algebra I. After its initial implementation at Patterson High School, the course was implemented in other schools in Baltimore and Philadelphia. By early 2000, schools from New York to New Orleans were using Transition to Advanced Mathematics.

Transition to Advanced Mathematics is designed to help students develop the critical thinking skills necessary for success in advanced mathematics. The course is structured to provide a solid foundation in algebraic concepts and problem-solving strategies. Students are encouraged to think critically and apply their knowledge to real-world situations. Transition to Advanced Mathematics includes a variety of instructional methods, such as group work, hands-on activities, and technology integration.

Benefits for Teachers

• Evidence-based, engaging curriculum that is regularly updated based on research, field results, and studies.
• A comprehensive “Teacher’s Kit” containing all the necessary components and resource materials to successfully implement TD curriculum.
• Teacher manuals outline successful teaching strategies, lesson aids, and optional activities to engage students in successful learning.
• Technology integration that fosters understanding of mathematical ideas in representational forms.
• TD coaches and professional development foster curriculum understanding and teacher development.

In the mid 1990s, a team of researchers and practitioners from Johns Hopkins University collaborated with high school teachers and administrators at Patterson High School in Baltimore to develop solutions for helping 9th-grade students succeed in Algebra I. Borne from the initial research was Transition to Advanced Mathematics (TAM), a course strategically designed to prepare students for Algebra I. After its initial implementation at Patterson High School, the course was implemented in other schools in Baltimore and Philadelphia. By early 2000, schools from New York to New Orleans were using Transition to Advanced Mathematics.

Transition to Advanced Mathematics is designed to help students develop the critical thinking skills necessary for success in advanced mathematics. The course is structured to provide a solid foundation in algebraic concepts and problem-solving strategies. Students are encouraged to think critically and apply their knowledge to real-world situations. Transition to Advanced Mathematics includes a variety of instructional methods, such as group work, hands-on activities, and technology integration.

Benefits for Students

Students across the country are responding to TD Mathematics Initiative!

“I love the Transition to Advanced Mathematics program! Before TAM, I HATED math, but that program helped me understand math a lot better. It got me more involved in doing problems and work better. I loved it!”

“Thanks to TAM, I feel more confident to take on math problems all by myself.”

“I liked actually learning!”

“It gave me a picture in my head about what I learned and how to solve the problem.”

In the mid 1990s, a team of researchers and practitioners from Johns Hopkins University collaborated with high school teachers and administrators at Patterson High School in Baltimore to develop solutions for helping 9th-grade students succeed in Algebra I. Borne from the initial research was Transition to Advanced Mathematics (TAM), a course strategically designed to prepare students for Algebra I. After its initial implementation at Patterson High School, the course was implemented in other schools in Baltimore and Philadelphia. By early 2000, schools from New York to New Orleans were using Transition to Advanced Mathematics.

Transition to Advanced Mathematics is designed to help students develop the critical thinking skills necessary for success in advanced mathematics. The course is structured to provide a solid foundation in algebraic concepts and problem-solving strategies. Students are encouraged to think critically and apply their knowledge to real-world situations. Transition to Advanced Mathematics includes a variety of instructional methods, such as group work, hands-on activities, and technology integration.

Benefits for Teachers

• Evidence-based, engaging curriculum that is regularly updated based on research, field results, and studies.
• A comprehensive “Teacher’s Kit” containing all the necessary components and resource materials to successfully implement TD curriculum.
• Teacher manuals outline successful teaching strategies, lesson aids, and optional activities to engage students in successful learning.
• Technology integration that fosters understanding of mathematical ideas in representational forms.
• TD coaches and professional development foster curriculum understanding and teacher development.

In the late 1990s, Strawberry Mansion High School in Philadelphia was one of the city’s lowest-performing high schools. By 2001, only 2% of its 11th-graders were proficient in mathematics, and its graduation rate was well below 50%. Strawberry Mansion High School and Talent Development High Schools allied to solve this crisis, and today, Strawberry Mansion is the neighborhood high school with the greatest achievement and graduation gains in the school district.

Over the past six years, the percentage of students proficient in mathematics has grown by 51 percentage points and the school’s graduation rate his risen to 74.5 percent.

Benefits for Students

Students across the country are responding to TD Mathematics Initiative!

“I love the Transition to Advanced Mathematics program! Before TAM, I HATED math, but that program helped me understand math a lot better. It got me more involved in doing problems and work better. I loved it!”

“Thanks to TAM, I feel more confident to take on math problems all by myself.”

“I liked actually learning!”

“It gave me a picture in my head about what I learned and how to solve the problem.”

In the late 1990s, Strawberry Mansion High School in Philadelphia was one of the city’s lowest-performing high schools. By 2001, only 2% of its 11th-graders were proficient in mathematics, and its graduation rate was well below 50%. Strawberry Mansion High School and Talent Development High Schools allied to solve this crisis, and today, Strawberry Mansion is the neighborhood high school with the greatest achievement and graduation gains in the school district.

Over the past six years, the percentage of students proficient in mathematics has grown by 51 percentage points and the school’s graduation rate his risen to 74.5 percent.
Talent Development offers a wide array of courses. If you would like a course prospectus or more information on any of our courses, please contact us, and we will be happy to forward you additional information. You are also invited to visit our website at www.csos.jhu.edu for complete information on Talent Development programs and curricula.

English Language Arts
- Strategic Reading
- Reading & Writing in Your Career
- College Prep Reading & Writing
- Literacy Lab

Mathematics
- Transition to Advanced Mathematics
- Geometry Foundations
- Algebra II Foundations
- Career Academy Blended Mathematics

Social Studies
- Freshman Seminar